Real analysis
Real analysis (traditionally, the
theory of functions of a real variable) is a branch of
mathematical analysis dealing with the
real numbers and real-valued functions of a real variable. In particular, it deals with the
analytic properties of real
functions and
sequences, including
convergence and
limits of
sequences of real numbers, the
calculus of the real numbers, and
continuity,
smoothness and related properties of real-valued functions
Scope
Construction of the real numbers
The theorems of real analysis rely intimately upon the structure of
the real number line. The real number system consists of a set (
![\mathbb {R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc)
),
together with two operations (+ and •) and an order (<), and is,
formally speaking, an ordered quadruple consisting of these objects:
![{\displaystyle (\mathbb {R} ,+,\bullet ,<)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ee9007c9c673c536b9b12add9636df1120e804c)
. There are several ways of formalizing the definition of the
real number system. The
synthetic approach gives a list of
axioms for the real numbers as a
complete ordered field. Under the usual axioms of
set theory, one can show that these axioms are
categorical, in the sense that there is a
model for the axioms, and any two such models are
isomorphic. Any one of these models must be explicitly constructed, and most of these models are built using the basic properties of the
rational number system as an ordered field. These constructions are described in more detail in the main article.
In addition to these algebraic notions, the real numbers, equipped with the
absolute value function as a metric (that is,
![{\displaystyle d:\mathbb {R} \times \mathbb {R} \to \mathbb {R} _{\geq 0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a91926fb3f533e8e1aa015a11b92210f0a65ec0)
, defined by
![d(x,y)=|x-y|](https://wikimedia.org/api/rest_v1/media/math/render/svg/994ad8add8719c1d111342afeb970648ffff41f2)
), constitutes the prototypical example of a
metric space. Many important theorems in real analysis (e.g., the
intermediate value theorem)
remain valid when they are restated as statements involving metric
spaces. These theorems are frequently topological in nature, and placing
them in the more abstract setting of metric spaces (or
topological spaces) may lead to proofs that are shorter, more natural, or more elegant.
Order properties of the real numbers
The real numbers have several important
lattice-theoretic properties that are absent in the complex numbers. Most importantly, the real numbers form an
ordered field, in which addition and multiplication preserve positivity. Moreover, the ordering of the real numbers is
total, and the real numbers have the
least upper bound property. These
order-theoretic properties lead to a number of important results in real analysis, such as the
monotone convergence theorem, the
intermediate value theorem and the
mean value theorem.
However, while the results in real analysis are stated for real
numbers, many of these results can be generalized to other mathematical
objects. In particular, many ideas in
functional analysis and
operator theory generalize properties of the real numbers – such generalizations include the theories of
Riesz spaces and
positive operators. Also, mathematicians consider
real and
imaginary parts of complex sequences, or by
pointwise evaluation of
operator sequences.
Sequences
A
sequence is a
function whose domain is a
countable,
totally ordered set, usually taken to be the
natural numbers or whole numbers.
[1]
Occasionally, it is also convenient to consider bidirectional sequences
indexed by the set of all integers, including negative indices.
Of interest in real analysis, a
real-valued sequence, here indexed by the natural numbers, is a map
![{\displaystyle a:\mathbb {N} \to \mathbb {R} ,\ n\mapsto a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/206c98e968445669557b27438c3d419b39b2da17)
. Each
![a(n)=a_{n}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af67b8f34e722c6b25e71d4aa185cd2a9cb4828a)
is referred to as a
term (or, less commonly, an
element)
of the sequence. A sequence is rarely denoted explicitly as a function;
instead, by convention, it is almost always notated as if it were an
ordered ∞-tuple, with individual terms or a general term enclosed in
parentheses:
.[2]
A sequence that tends to a
limit (i.e.,
![{\textstyle \lim _{n\to \infty }a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3886d813df09cb056ba182f1b71907821d7bb49e)
exists) is said to be
convergent; otherwise it is
divergent. (
See the section on limits for details) A real-valued sequence
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
is
bounded if there exists
![{\displaystyle M\in \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4524e7e5810076a90447eddce020ccb45bb8db0)
such that
![{\displaystyle |a_{n}|<M}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5dccafd5f6210b68461eb28241ccd49185f493e2)
for all
![n\in \mathbb {N}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b)
. A real-valued sequence
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
is
monotonically increasing or
decreasing if
or ![{\displaystyle a_{1}\geq a_{2}\geq a_{3}\geq \ldots }](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c3d31621df0d47f3acf676cbbd8f4e346bcbb57)
holds, respectively. If either holds, the sequence is said to be
monotonic.
Limits and convergence
A
limit is the value that a
function or
sequence "approaches" as the input or index approaches some value.
[3] Limits are essential to
calculus (and
mathematical analysis in general) and are used to define
continuity,
derivatives, and
integrals. In fact, calculus has been defined as the study of limits and limiting processes.
First proposed by
Cauchy and made rigorous by
Bolzano and
Weierstrass, the concept of a limit allowed
Newton and
Leibniz's
calculus to be studied in a logically sound manner, eventually giving
rise to analysis as a mathematical discipline. The modern ε-δ definition
of the limit of a function of a real variable is given below.
Definition. Let
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
be a real-valued function defined on
![E\subset\mathbb{R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b49e6f675856c92bee1a44a7465a127b2ce06f4)
. We say that
tends to
as
approaches ![x_{0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf)
, or that
the limit of
as
approaches
is ![L](https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8)
if, for any
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
, there exists
![\delta >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9)
such that for all
![x\in E](https://wikimedia.org/api/rest_v1/media/math/render/svg/30b1971b01bc31d5b816f03cc7e1d9215d6c2ad8)
,
![{\displaystyle 0<|x-x_{0}|<\delta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/f149a350dfe960048a67f396aba0d1b6b1c581a2)
implies that
![{\displaystyle |f(x)-L|<\epsilon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbf10639849e23a66c948f89b2e901bd87e1bfc)
. We write this symbolically as
, or
.
Intuitively, this definition can be thought of in the following way: We say that
![{\displaystyle f(x)\to L}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d1fd369b190a6c2279b396c7d3759ae9ffad8f88)
as
![{\displaystyle x\to x_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ffbf95eb25f9fae501b6beaf31d0728fba4c451)
, when we can always find a positive number
![\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a)
, such that given any positive number
![\epsilon](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2)
(no matter how small), we can guarantee that
![f(x)](https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074)
and
![L](https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8)
are less than
![\epsilon](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2)
apart, as long as
![x](https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4)
(in the domain of
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
) is a real number that is less than
![\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a)
away from
![x_{0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf)
but distinct from
![x_{0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf)
. The purpose of the last stipulation, which corresponds to the condition
![{\displaystyle 0<|x-x_{0}|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1a5165f94b6e28e3f64fdefdd4dc30c477ef39)
in the definition, is to ensure that
![{\displaystyle \lim _{x\to x_{0}}f(x)=L}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f5b2a37079ab1e833fe73c8fed99d23000a18da)
does not imply anything about the value of
![f(x_{0})](https://wikimedia.org/api/rest_v1/media/math/render/svg/27cf1dbaefc6038a22779fb2943aff758a592a3a)
itself. Actually,
![x_{0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf)
does not even need to be in the domain of
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
in order for
![{\displaystyle \lim _{x\to x_{0}}f(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59e292a52f9a256d212f701324d3dd0a088412cb)
to exist.
In a closely related context, the concept of a limit applies to the behavior of a sequence
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
when
![n](https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b)
becomes large.
Definition. Let
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
be a real-valued sequence. We say that
converges to ![a](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc)
if, for any
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
, there exists an natural number
![N](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3)
such that
![n\geq N](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b67a4f8e2ce89617f08316bfdcc6f33887b5629)
implies that
![{\displaystyle |a-a_{n}|<\epsilon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/027e8692230640251428309fe9983101589dfb3b)
. We write this symbolically as
, or
;
if
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
fails to converge, we say that
diverges.
Sometimes, it is useful to conclude that a sequence converges, even
though the value to which it converges is unknown or irrelevant. In
these cases, the concept of a Cauchy sequence is useful.
Definition. Let
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
be a real-valued sequence. We say that
![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
is a
Cauchy sequence if, for any
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
, there exists an natural number
![N](https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3)
such that
![{\displaystyle m,n\geq N}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59c355719450238363bc6f260df1a188977a7972)
implies that
![{\displaystyle |a_{m}-a_{n}|<\epsilon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/63acb560fc77da5ce85262ca116356f9d55eb7f3)
.
It can be shown that a real-valued sequence is Cauchy if and only if
it is convergent. This property of the real numbers is expressed by
saying that the real numbers endowed with the standard metric,
![{\displaystyle (\mathbb {R} ,|\cdot |)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8617fa084440d7e0966d3cc400de98c2d02f0cf)
, is a
complete metric space. In a general metric space, however, a Cauchy sequence need not converge.
In addition, for real-valued sequences that are monotonic, it can be
shown that the sequence is bounded if and only if it is convergent.
Continuity
A
function from the set of
real numbers to the real numbers can be represented by a
graph in the
Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken
curve with no "holes" or "jumps".
There are several ways to make this intuition mathematically
rigorous. Several definitions of varying levels of generality can be
given. In cases where two or more definitions are applicable, they are
readily shown to be
equivalent
to one another, so the most convenient definition can be used to
determine whether a given function is continuous or not. In the first
definition given below,
![{\displaystyle f:I\to \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d0048c7d78f42a3cd038906db745c64ff1ed6aa6)
is a function defined on a non-degenerate interval
![I](https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f)
of the set of real numbers as its
domain. Some possibilities include
![{\displaystyle I=\mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6800769b2da30a8dbedc8749b79cb5ce1f940b0)
, the whole set of real numbers, an
open interval ![{\displaystyle I=(a,b)=\{x\in \mathbb {R} \,|\,a<x<b\},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b582e6ff1960b1301b538cffd20810d8565da360)
or a
closed interval ![{\displaystyle I=[a,b]=\{x\in \mathbb {R} \,|\,a\leq x\leq b\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/81f32c7419841b88af2aa1770db80ba0eb7e6a86)
Here,
![a](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc)
and
![b](https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3)
are distinct real numbers, and we exclude the case of
![I](https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f)
being empty or consisting of only one point, in particular.
Definition. If
![I\subset \mathbb{R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5cde0281fd5d2d1b103f9430aab29b7c2a2e324)
is a non-degenerate interval, we say that
![{\displaystyle f:I\to \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d0048c7d78f42a3cd038906db745c64ff1ed6aa6)
is
continuous at ![{\displaystyle p\in E}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc1fd5abc12ee66f91ac194c53b83dcee635159)
if
![{\displaystyle \lim _{x\to p}f(x)=f(p)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb8fd3e560318c484ce34d1f92b125b786ac7c4)
. We say that
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is a
continuous map if
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is continuous at every
![{\displaystyle p\in I}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52e23e0acd5b457a0ca8d7673c79e81c92c7a502)
.
In contrast to the requirements for
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
to have a limit at a point
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
, which do not constrain the behavior of
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
at
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
itself, the following two conditions, in addition to the existence of
![{\textstyle \lim _{x\to p}f(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b6ae370f4ff0f07842ebe479232cc8dd428ddff5)
, must also hold in order for
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
to be continuous at
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
:
(i) ![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
must be defined at
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
, i.e.,
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
is in the domain of
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
;
and (ii) ![{\displaystyle f(x)\to f(p)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5ca4c8284032ef387a1fe4da6d4de685a3aa3c6)
as
![{\displaystyle x\to p}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa0dc862480dbca805819cfacfe66e8510bbea71)
. The definition above actually applies to any domain
![E](https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b)
that does not contain an
isolated point, or equivalently,
![E](https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b)
where every
![{\displaystyle p\in E}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc1fd5abc12ee66f91ac194c53b83dcee635159)
is a
limit point of
![E](https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b)
. A more general definition applying to
![f:X\to\mathbb{R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/669fa4832da4b0b229d77eadb270e95188f2eb10)
with a general domain
![X\subset {\mathbb {R}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71afe1acdf6107bac3e40fa236a6ee59459006e9)
is the following:
Definition. If
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
is an arbitrary subset of
![\mathbb {R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc)
, we say that
![f:X\to\mathbb{R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/669fa4832da4b0b229d77eadb270e95188f2eb10)
is
continuous at ![p\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/fae5d7ae3f7710fc989d0bd6dca038d74107f16d)
if, for any
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
, there exists
![\delta >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9)
such that for all
![x\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e580967f68f36743e894aa7944f032dda6ea01d)
,
![|x-p|<\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/1118bccd6cb7b6df1a180955f00b5d0af71f9fe3)
implies that
![|f(x)-f(p)|<\epsilon](https://wikimedia.org/api/rest_v1/media/math/render/svg/75c8b21ab6175820cb9e8c84f9f53dc074b1817c)
. We say that
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is a
continuous map if
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is continuous at every
![p\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/fae5d7ae3f7710fc989d0bd6dca038d74107f16d)
.
A consequence of this definition is that
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is
trivially continuous at any isolated point ![p\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/fae5d7ae3f7710fc989d0bd6dca038d74107f16d)
.
This somewhat unintuitive treatment of isolated points is necessary to
ensure that our definition of continuity for functions on the real line
is consistent with the most general definition of continuity for maps
between
topological spaces (which includes
metric spaces and
![\mathbb {R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc)
in particular as special cases). This definition, which extends beyond
the scope of our discussion of real analysis, is given below for
completeness.
Definition. If
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
and
![Y](https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f)
are topological spaces, we say that
![f:X\to Y](https://wikimedia.org/api/rest_v1/media/math/render/svg/abd1e080abef4bbdab67b43819c6431e7561361c)
is
continuous at ![p\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/fae5d7ae3f7710fc989d0bd6dca038d74107f16d)
if
![{\displaystyle f^{-1}(V)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b5171cc2674480baf68e55ff20378a5413d4728)
is a
neighborhood of
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
in
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
for every neighborhood
![V](https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845)
of
![f(p)](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a2be54931c84179e944e716af5bf95657cbce1d)
in
![Y](https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f)
. We say that
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
is a
continuous map if
![f^{-1}(U)](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8467d2b1831e3e4ef040a899742a9d6db350f90)
is open in
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
for every
![U](https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025)
open in
![Y](https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f)
.
(Here,
![f^{-1}(S)](https://wikimedia.org/api/rest_v1/media/math/render/svg/c994fcc06dde13bed6ddd5c653fdd17f51bbaecb)
refers to the
preimage of
![{\displaystyle S\subset Y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf4832cc8c87f18ee091840dbd0a2ce2930523e4)
under
![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)
.)
Uniform continuity
Definition. If
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
is a subset of the
real numbers, we say a function
![f:X\to\mathbb{R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/669fa4832da4b0b229d77eadb270e95188f2eb10)
is
uniformly continuous on ![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
if, for any
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
, there exists a
![\delta >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9)
such that for all
![x,y\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d72f66ab332ed430aa9b34ff18c9723c4fea2a1)
,
![{\displaystyle |x-y|<\delta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2fd2b34a4c5b16706519bfd1dd3966496b73395)
implies that
.
Explicitly, when a function is uniformly continuous on
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
, the choice of
![\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a)
needed to fulfill the definition must work for
all of ![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
for a given
![\epsilon](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2)
. In contrast, when a function is continuous at every point
![p\in X](https://wikimedia.org/api/rest_v1/media/math/render/svg/fae5d7ae3f7710fc989d0bd6dca038d74107f16d)
(or said to be continuous on
![X](https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab)
), the choice of
![\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a)
may depend on both
and ![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
.
Importantly, in contrast to simple continuity, uniform continuity is a
property of a function that only makes sense with a specified domain; to
speak of uniform continuity at a single point
![p](https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36)
is meaningless.
On a compact set, it is easily shown that all continuous functions are uniformly continuous. If
![E](https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b)
is a bounded noncompact subset of
![\mathbb {R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc)
, then there exists
![{\displaystyle f:E\to \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/3476ca7d92ca2b5782c4d0570eaa04f89608ee1c)
that is continuous but not uniformly continuous. As a simple example, consider
![{\displaystyle f:(0,1)\to \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cfcccc0020acd0741ea518628acec0899a6d937f)
defined by
![f(x)=1/x](https://wikimedia.org/api/rest_v1/media/math/render/svg/049b4bda6d9e222e496f2670248d9ecfb75841d1)
. By choosing points close to 0, we can always make
![{\displaystyle |f(x)-f(y)|>\epsilon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/578db3245bf5090201345ddba3f3f83f2d404e1a)
for any single choice of
![\delta >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9)
, for a given
![\epsilon >0](https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71)
.
Absolute continuity
Let
![{\displaystyle I\subset \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5cde0281fd5d2d1b103f9430aab29b7c2a2e324)
be an
interval on the
real line. A function
![{\displaystyle f:I\to \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d0048c7d78f42a3cd038906db745c64ff1ed6aa6)
is
absolutely continuous on
![I](https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f)
if for every positive number
![\epsilon](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2)
, there is a positive number
![\delta](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a)
such that whenever a finite sequence of
pairwise disjoint sub-intervals
![{\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),\ldots ,(x_{n},y_{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ca2f4495a696bd25c680ee36048e63534cfe9a0)
of
![I](https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f)
satisfies
[4]
![{\displaystyle \sum _{k=1}^{n}(y_{k}-x_{k})<\delta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0322cc5a46c36010f6ac46430270e3227fef848)
then
![{\displaystyle \displaystyle \sum _{k=1}^{n}|f(y_{k})-f(x_{k})|<\epsilon .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/91038c0a8d0acf50f5f4091ccfb433ab6c56a8f1)
Absolutely continuous functions are continuous: consider the case
n = 1 in this definition. The collection of all absolutely continuous functions on
I is denoted AC(
I).
The following conditions on a real-valued function
f on a compact interval [
a,
b] are equivalent:
[5]
- (1) f is absolutely continuous;
- (2) f has a derivative f ′ almost everywhere, the derivative is Lebesgue integrable, and
![f(x)=f(a)+\int _{a}^{x}f'(t)\,dt](https://wikimedia.org/api/rest_v1/media/math/render/svg/ad661a47c830a2b7acca5affea2d379246cabf95)
- for all x on [a,b];
- (3) there exists a Lebesgue integrable function g on [a,b] such that
![f(x)=f(a)+\int _{a}^{x}g(t)\,dt](https://wikimedia.org/api/rest_v1/media/math/render/svg/c53cbbc28c14740fc38a4296c2eb55f1534f2eac)
- for all x on [a,b].
If these equivalent conditions are satisfied then necessarily
g =
f ′ almost everywhere.
Equivalence between (1) and (3) is known as the
fundamental theorem of Lebesgue integral calculus, due to
Lebesgue.
[6]
Series
Given an (infinite)
sequence ![(a_{n})](https://wikimedia.org/api/rest_v1/media/math/render/svg/18bc33c7c35d82b00f88d3a9103ed4738cde41f9)
, we can define an associated
series as the formal mathematical object
![{\textstyle a_{1}+a_{2}+a_{3}+\cdots =\sum _{n=1}^{\infty }a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/19d90617cb7d9c33fe1e5089e4f465d73693aae8)
, sometimes simply written as
![{\textstyle \sum a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5394f0a4c598530f56c6d317c45e33e64674)
. The
partial sums of a series
![{\textstyle \sum a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5394f0a4c598530f56c6d317c45e33e64674)
are the numbers
![{\textstyle s_{n}=\sum _{j=1}^{n}a_{j}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/368973f9fa852c70c9c4c670c3a770c2e2a9bd35)
. A series
![{\textstyle \sum a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5394f0a4c598530f56c6d317c45e33e64674)
is said to be
convergent if the sequence consisting of its partial sums,
![(s_n)](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffbf9d496548aa4ee7fb36257c568c7d7e9e99c3)
, is convergent; otherwise it is
divergent. The
sum of a convergent series is defined as the number
![{\textstyle s=\lim _{n\to \infty }s_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d3584f8f7da535c177b8865e4ed89a46a55ea53)
.
It is to be emphasized that the word "sum" is used here in a
metaphorical sense as a shorthand for taking the limit of a sequence of
partial sums and should not be interpreted as simply "adding" an
infinite number of terms. For instance,in contrast to the behavior of
finite sums,rearranging the terms of an infinite series may result in
convergence to a different number (see the article on the
Riemann rearrangement theorem for further discussion).
An example of a convergent series is a
geometric series which forms the basis of one of Zeno's famous
paradoxes:
.
In contrast, the
harmonic series has been known since the Middle Ages to be a divergent series:
.
(Here, "
![=\infty](https://wikimedia.org/api/rest_v1/media/math/render/svg/8d9d21854415b7cac4df34ba72efde96810cc753)
" is merely a notational convention to indicate that the partial sums of the series grow without bound.)
A series
![{\textstyle \sum a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5394f0a4c598530f56c6d317c45e33e64674)
is said to
converge absolutely if
![{\textstyle \sum |a_{n}|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a6bfe57a9fc18c450837d818f1b6175e8e37501)
is convergent. A convergent series
![{\textstyle \sum a_{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e5f5394f0a4c598530f56c6d317c45e33e64674)
for which
![{\textstyle \sum |a_{n}|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a6bfe57a9fc18c450837d818f1b6175e8e37501)
diverges is said to
converge conditionally (or
nonabsolutely).
It is easily shown that absolute convergence of a series implies its
convergence. On the other hand, an example of a conditionally convergent
series is
.
Taylor series
The Taylor series of a
real or
complex-valued function ƒ(
x) that is
infinitely differentiable at a
real or
complex number a is the
power series
![f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+{\frac {f^{(3)}(a)}{3!}}(x-a)^{3}+\cdots .](https://wikimedia.org/api/rest_v1/media/math/render/svg/a2739fedd8d8971d66274dc36955b7a86b7ecae9)
which can be written in the more compact
sigma notation as
![\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}\,(x-a)^{n}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e4e3f2a8f914c3a03ad35da7cb877d700a614ea)
where
n! denotes the
factorial of
n and
ƒ (n)(
a) denotes the
nth
derivative of
ƒ evaluated at the point
a. The derivative of order zero
ƒ is defined to be
ƒ itself and
(x − a)0 and 0! are both defined to be 1. In the case that
a = 0, the series is also called a Maclaurin series.
Fourier series
A
Fourier series decomposes
periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely
sines and cosines (or
complex exponentials). The study of Fourier series is a branch of
Fourier analysis.
Differentiation
Formally, the derivative of the function
f at
a is the
limit
![f'(a)=\lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1adc2b0246d757c7ef52ecc58a356937537f5975)
If the derivative exists everywhere, the function is
differentiable. One can take higher derivatives as well, by iterating this process.
One can classify functions by their
differentiability class. The class
C0 consists of all continuous functions. The class
C1 consists of all
differentiable functions whose derivative is continuous; such functions are called
continuously differentiable. Thus, a
C1 function is exactly a function whose derivative exists and is of class
C0. In general, the classes
Ck can be defined
recursively by declaring
C0 to be the set of all continuous functions and declaring
Ck for any positive integer
k to be the set of all differentiable functions whose derivative is in
Ck−1. In particular,
Ck is contained in
Ck−1 for every
k, and there are examples to show that this containment is strict.
C∞ is the intersection of the sets
Ck as
k varies over the non-negative integers.
Cω consists of all
analytic functions, and is strictly contained in
C∞.
Integration
Riemann integration
The Riemann integral is defined in terms of
Riemann sums of functions with respect to
tagged partitions of an interval. Let [
a,
b] be a
closed interval of the real line; then a
tagged partition of [
a,
b] is a finite sequence
![a=x_{0}\leq t_{1}\leq x_{1}\leq t_{2}\leq x_{2}\leq \cdots \leq x_{n-1}\leq t_{n}\leq x_{n}=b.\,\!](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a95dc34e72c3da728c59d5f83e148f3e57f100b)
This partitions the interval [
a,
b] into
n sub-intervals
[xi−1, xi] indexed by
i, each of which is "tagged" with a distinguished point
ti ∈ [xi−1, xi]. A
Riemann sum of a function
f with respect to such a tagged partition is defined as
![\sum _{i=1}^{n}f(t_{i})\Delta _{i};](https://wikimedia.org/api/rest_v1/media/math/render/svg/f988bf16d04d532a77e978ed1d82addfb9ab761c)
thus each term of the sum is the area of a rectangle with height
equal to the function value at the distinguished point of the given
sub-interval, and width the same as the sub-interval width. Let
Δi = xi−xi−1 be the width of sub-interval
i; then the
mesh of such a tagged partition is the width of the largest sub-interval formed by the partition,
maxi=1...n Δi. The
Riemann integral of a function
f over the interval [
a,
b] is equal to
S if:
- For all ε > 0 there exists δ > 0 such that, for any tagged partition [a,b] with mesh less than δ, we have
![\left|S-\sum _{i=1}^{n}f(t_{i})\Delta _{i}\right|<\varepsilon .](https://wikimedia.org/api/rest_v1/media/math/render/svg/71a62f497a5a8828a7f5d2d71fdd6a50292232a8)
When the chosen tags give the maximum (respectively, minimum) value
of each interval, the Riemann sum becomes an upper (respectively, lower)
Darboux sum, suggesting the close connection between the Riemann integral and the
Darboux integral